Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 2

Spaces of continuous functions

math.uwb.edu.pl/~zaf/kwasniewski/teaching

Spaces of continuous functions

Let $\boldsymbol{\Omega}$ be a fixed topological space.

Continuous functions $C(\Omega) := \{x : \Omega \to \mathbb{F} \text{ is continuous}\}$ with values in the field $\mathbb{F} = \mathbb{R}, \mathbb{C}$ and (pointwise)

$$(x+y)(t) := x(t)+y(t), \qquad (\lambda x)(t) := \lambda x(t)$$
 (pointwise operations

where $x, y \in C(\Omega)$, $\lambda \in \mathbb{F}$, is a linear space over \mathbb{F} .

Continuous and bounded functions:

$$egin{aligned} \mathcal{C}_b(\Omega) &:= \{x \in \mathcal{C}(\Omega) : \exists_M orall_{t \in \Omega} | x(t) | < M \} \ &= \{x \in \mathcal{C}(\Omega) : \sup_{t \in \Omega} | x(t) | < \infty \} \end{aligned}$$

form a linear subspace of $C(\Omega)$, which is equipped with the so-called **supremum norm**

$$\|x\|_{\infty} := \sup_{t \in \Omega} |x(t)|.$$

Fact. Convergence in $\|\cdot\|_{\infty} \equiv$ **uniform convergence**

$$\begin{array}{l} x_n \stackrel{\|\cdot\|_{\infty}}{\longrightarrow} x \iff \lim_{n \to \infty} \|x_n - x\|_{\infty} = 0 \\ \Leftrightarrow \qquad \lim_{n \to \infty} \sup_{t \in \Omega} |x_n(t) - x(t)| = 0 \\ \Leftrightarrow \qquad \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} \sup_{t \in \Omega} |x_n(t) - x(t)| < \varepsilon \\ \Leftrightarrow \qquad \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} \forall_{t \in \Omega} |x_n(t) - x(t)| < \varepsilon \\ \Leftrightarrow \qquad \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} \forall_{t \in \Omega} |x_n(t) - x(t)| < \varepsilon \\ \Leftrightarrow \qquad \underset{def}{\overset{def}{\longleftrightarrow}} x_n \rightrightarrows x \end{array}$$

where symbol \Rightarrow denotes the uniform convergence.

Ex. The sequence $x_n(t) = t^n$ of functions on [0, 1] is pointwise convergent to $x(t) = \begin{cases} 0, & t < 1 \\ 1, & t = 1 \end{cases}$. But $\{x_n\}_{n=1}^{\infty} \subseteq C(\Omega)$ is not convergent in the norm $\|\cdot\|_{\infty}$. In particular,

uniformly convergent sequence of continuous functions has to be convergent to a continuous function!

Prop. $C_b(\Omega)$ with the norm $||x||_{\infty} = \sup_{t \in \Omega} |x(t)|$ is a Banach space.

Proof: Let $\{x_n\}_{n=1}^{\infty} \subseteq C_b(\Omega)$ be Cauchy. For each $t \in \Omega$

Your candidate in the elections. No one will give you as much as I can promise

Prop. $C_b(\Omega)$ with the norm $||x||_{\infty} = \sup_{t \in \Omega} |x(t)|$ is a Banach space.

Proof: Let $\{x_n\}_{n=1}^{\infty} \subseteq C_b(\Omega)$ be Cauchy. For each $t \in \Omega$

$$|x_n(t)-x_m(t)| \leqslant \sup_{s\in\Omega} |x_n(s)-x_m(s)| = \|x_n-x_m\|_{\infty} \stackrel{n,m\to\infty}{\longrightarrow} 0.$$

Hence the sequence $\{x_n(t)\}_{n=1}^{\infty}$ of scalars is Cauchy in \mathbb{F} . Since \mathbb{F} is complete, there is $x(t) \in \mathbb{F}$ such, that $x_n(t) \to x(t)$ w \mathbb{F} . Thus we obtain a function $\Omega \ni t \mapsto x(t) \in \mathbb{F}$, which is our "candidate for the limit" of the sequence $\{x_n\}_{n=1}^{\infty}$. For each $t \in \Omega$ we have

$$|x_n(t) - x(t)| = \lim_{m \to \infty} |x_n(t) - x_m(t)| \leq \lim_{m \to \infty} ||x_n - x_m||_{\infty}.$$

Hence
$$|x_n - x_m||_{\infty} = \lim_{n \to \infty} \sup_{t \in \Omega} |x_n(t) - x(t)| \leq \lim_{n \to \infty} \lim_{m \to \infty} ||x_n - x_m||_{\infty} = 0.$$

Whence $x_n \stackrel{\|\cdot\|_{\infty}}{\longrightarrow} x$. The uniform limit of continuous functions is continuous. Therefore $x \in C(\Omega)$. Moreover, x is bounded because

n

 $\|x\|_{\infty} \leq \|x - x_n\|_{\infty} + \|x_n\|_{\infty} < \infty.$ Thus $x \in C_b(\Omega)$.

A continuous function on a compact set reaches its limits!

Cor. If Ω compact, then $C(\Omega) = C_b(\Omega)$ and $||x||_{\infty} = \max_{t \in \Omega} |x(t)|$ (the function |x(t)| attains its maximum and in particular is bounded)

Continuous functions that vanish at infinity

$$\mathcal{C}_0(\Omega):=\left\{x\in\mathcal{C}(\Omega): orall_{arepsilon>0}\; \{t\in\Omega: |x(t)|\geqslantarepsilon\} ext{ is compact}
ight\}$$

Rem. If Ω is compact, then $C_0(\Omega) = C(\Omega) = C_b(\Omega)!$

Prop. $C_0(\Omega)$ is a closed subspace of the Banach space $(C_b(\Omega), \|\cdot\|_{\infty})$. Hence $(C_0(\Omega), \|\cdot\|_{\infty})$ is a Banach space.

Proof: Let $x, y \in C_0(\Omega)$ and $\varepsilon > 0$. Note that $\{t: |x(t)+y(t)| \ge \varepsilon\} \subseteq \{t: |x(t)| \ge \varepsilon/2\} \cup \{t: |y(t)| \ge \varepsilon/2\}.$ compact as a union of two compacts closed Hence $\{t : |x(t) + y(t)| \ge \varepsilon\}$ is compact, as a closed susbet of a compact set. Hence $x + y \in C_0(\Omega)$. For $\lambda \in \mathbb{F}$ the set $\{t: |\lambda x(t)| \ge \varepsilon\} = \{t: |x(t)| \ge \frac{\varepsilon}{|\lambda|}\}$ is compact, so $\lambda x \in C_0(\Omega)$. Since |x(t)| is continuus on the compact set $\{t : |x(t)| \ge \varepsilon\}$, we get $\|x\|_{\infty} = \max_{t \in \Omega} |x(t)| < \infty$. Thus $C_0(\Omega) \subseteq C_b(\Omega)$ is a subspace. *"Closedness":* Let $\{x_n\}_{n=1}^{\infty} \subseteq C_0(\Omega)$ be convergent to some $x \in C_b(\Omega)$. For large $n \in \mathbb{N}$ we have $||x_n - x||_{\infty} < \frac{\varepsilon}{2}$ and then $\{t: |x(t)| \ge \varepsilon\} \subset \{t: |x_n(t)| \ge \varepsilon/2\}.$

Thus $\{t : |x(t)| \ge \varepsilon\}$ is compact, as a closed subset of a compact set. Hence $x \in C_0(\Omega)$. Accordingly, $C_0(\Omega)$ is closed in $C_b(\Omega)$. On a discrete spaces all functions are continuous! Sequences are functions on the set \mathbb{N} !

Cor. If $\Omega = \mathbb{N}$ is equipped with discrete topology, then we identify $C_b(\Omega)$ with the space of bounded sequences:

$$\ell^{\infty} := \{x = (x(1), x(2), ...) : \sup_{k \in \mathbb{N}} |x(k)| < \infty\}$$

equipped with the norm $||x||_{\infty} := \sup |x(k)|$. Similarly, $C_0(\Omega)$ can $k \in \mathbb{N}$ be identified with the space of sequences convergent to zero:

$$c_0 := \{x = (x(1), x(2), ...) : \lim_{k \to \infty} x(k) = 0\}.$$

Proof: A function $x : \mathbb{N} \to \mathbb{F}$ vanishes at infinity if and only if the sequence $\{x(k)\}_{k=1}^{\infty}$ converges to zero: n discrete

$$\begin{aligned} x \in \mathcal{C}_0(\mathbb{N}) &\iff \forall_{\varepsilon > 0} \ \{k \in \mathbb{N} : |x(k)| \ge \varepsilon\} \quad \text{compact = finite} \\ &\iff \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{k > N} |x(k)| < \varepsilon \iff x \in c_0. \end{aligned}$$

8 / 12

We also consider the space of convergent sequences:

$$c:=\{x=(x(1),x(2),\ldots):\exists_{x(\infty)\in\mathbb{F}}\lim_{k\to\infty}x(k)=x(\infty)\}.$$

As convergent sequences are bounded and limit preserves linear combinations, c is a linear subspace of ℓ^{∞} . Also c is closed in ℓ^{∞} (to prove it, you have to show that "a convergent sequence of convergent sequences converges to a convergent sequence").

Cor. We have the following Banach spaces

$$c_0 \subseteq c \subseteq \ell^{\infty}$$

with the norm $||x||_{\infty} := \sup_{k \in \mathbb{N}} |x(k)|$.

The support of a function $x : \Omega \to \mathbb{F}$ is the closed set

$$\operatorname{supp}(x) := \overline{\{t \in \Omega : x(t) \neq 0\}}.$$

Ex. If $\Omega = (0, +\infty)$ and $x(t) = \sin(1/t)$, then supp $(x) = \Omega$.

Lem. Compactly supported continuous functions $C_c(\Omega) := \{x \in C(\Omega) : \operatorname{supp}(x) \text{ is compact}\}$

form a linear subspace of $C_0(\Omega)$.

Proof: $C_c(\Omega) \subseteq C_0(\Omega)$, because $\{t \in \Omega : |x(t)| \ge \varepsilon\} \subseteq \text{supp}(x)$ and a closed subset of a compact set is compact. Moreover, $\text{supp}(\lambda x) = \text{supp}(x)$ for $\lambda \neq 0$ and

$$\operatorname{supp}(x + y) \subseteq \operatorname{supp}(x) \cup \operatorname{supp}(y),$$

when $C_c(\Omega)$ is a linear space.

Def. A topological space Ω is **locally compact** if any point in Ω has an open neighborhood, whose closure is compact The space Ω is **Hausdorff** if any two distinct points in Ω have disjoint open neighborhoods.

Ex. Every open or closed subset of \mathbb{R}^n is a locally compact Hausdorff space. Every metric space is Hausdorff.

Theorem (Urysohn lemma).

Let Ω be a locally compact Hausdorff space. For any $K \subseteq U \subseteq \Omega$ where K is compact and U is open there is continuous $h: \Omega \to [0, 1]$ with compact supp $(h) \subseteq U$ and attaining 1 on K.

Cor. If Ω is locally compact Hausdorff, then $C_c(\Omega) = C_0(\Omega)$. So $C_0(\Omega)$ is a completion of $C_c(\Omega)$ in the supremum norm.

Proof: Let $x \in C_0(\Omega)$. For each *n* put

$$K_n := \{t : |x(t)| \ge 1/n\}, \ U_n := \{t : |x(t)| > 1/(n+1)\}.$$

Then K_n is a compact subset of an open set U_n . By **Urysohn** lemma there is $h_n \in C_c(\Omega)$ such that $0 \le h \le 1$, $h_n|_{K_n} = 1$ and $\operatorname{supp}(h_n) \subseteq U_n$. Putting $x_n := x \cdot h_n$ we get $x_n \in C_c(\Omega)$ and $||x_n - x||_{\infty} = \sup_{t \in \Omega} |x(t)h(t) - x(t)| = \sup_{t \in \Omega \setminus K_n} |x(t)h(t) - x(t)| \le 2/n$.

Hence $\{x_n\}_{n=1}^{\infty} \subseteq C_c(\Omega)$ converges to $x \in C_0(\Omega)$.

Ex. For a discrete space $\Omega = \mathbb{N}$ the linear space $C_c(\Omega)$ can be indentified with the space of finite sequences:

 $c_{00} = \{x = (x(1), x(2), ..., x(N), 0, 0, ...) : N \in \mathbb{N}, x(k) \in \mathbb{F}\}.$

In particular, c_{00} is a dense subspace of c_0 .