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Spaces of continuous functions

Let 2 be a fixed topological space.

Continuous functions C(Q) := {x : Q — F is continuous} with
values in the field F = R, C and o
pointwise )

(x+y)(t) := x(t)+y(t), (Ax)(t) == Ax(t) ( operations
where x,y € C(Q2), A € T, is a linear space over F.
Continuous and bounded functions:
Co(Q) :={x € C(Q) : InVieql|x(t)] < M}
= {x € C(Q) : sup |x(t)| < oo}
teQ

form a linear subspace of C(£2), which is equipped with the
so-called supremum norm

X|loo :=sup |x(t)]. X
Ixlloo = supIx(6)l.
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Fact. Convergence in || - [|o = uniform convergence

I lloc

Xp — X = Iim |xn — X||oc = 0
n—

= I|m sup|x,,( ) —x(t)]=0

n—oo

> V.0 EINGN Vasn sup [x,(t) — x(t)] < e

teQ
<= Ves0 Inen Vasn Viea [Xa(t) — x(t)] < €
(d:mc> Xp = X

where symbol = denotes the uniform convergence.

Ex. The sequence x,(t) = t” of functions on [0, 1] is pointwise

0, t<1 :
convergent to x(t) = 1’ . But {x,}52, C C(Q) is not
t=
)
convergent in the norm || - ||co- In particular,

uniformly convergent sequence of continuous functlons
has to be convergent to a continuous function!




Prop. Cp(Q2) with the norm ||x||oc = sup |x(t)| is a Banach space.
teQ

Proof: Let {x,}7°; C C,(Q2) be Cauchy. For each t € Q

Your candidate in the elections.
No one will give you as much as I can promise




Prop. Cp(Q2) with the norm ||x||oc = sup |x(t)| is a Banach space.
teQ

Proof: Let {x,}72; C C,(Q2) be Cauchy. For each t € Q

|Xn(t) - Xm(t)‘ < SUS |Xn(5) — Xm(S)‘ — HXn o Xm”oo nvm;OO 0.
s€

Hence the sequence {x,(t)}52; of scalars is Cauchy in F. Since I is
complete, there is x(t) € F such, that x,(t) — x(t) w F. Thus we
obtain a function Q 3 t — x(t) € F, which is our "candidate for the
limit” of the sequence {x,}%2;. For each t € Q we have

Ixn(t) — x(8)] = lim [xp(t) — xm(t)Y < lim ||xn — Xm|oo-
m—o0 m—ao0
Hence {x2}52; jest Cauchy

lim ||xp—xX||oo = lim sup|xp(t)—x(t)] < lim lim ||xp—Xml/co = 0.
n—oo n—oo tEQ n—oo mMm—oo

lI-llo<

Whence x, — x. The uniform limit of continuous functions is
continuous. Therefore x € C(Q2). Moreover, x is bounded because

IX]loo < [IX = Xnlloo + [[Xn]loo < 00.  Thus x € Cp(2). M
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A continuous function on a compact set reaches its limits!

Cor. If Q compact, then C(Q) = Cp(R2) and ||x|lco = maxseq [x(t)]

(the function |x(t)| attains its maximum and in particular is bounded)

Continuous functions that vanish at infinity

Go(Q) = {x € C(Q) : Veso {t € Q: |x(£)] > £} is compact}

Ex. The function x(t) = e~** does

not vanish at any point in Q2 = R.

But it does vanish at infinity!

(teQ:|x(t) > e

Rem. If Q is compact, then Go(Q2) = C(Q) = Cp(Q)!
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Prop. Gy(Q) is a closed subspace of the Banach space (Cp(R2), || - [|0o)-
Hence (Go(2), || - [|eo) is @ Banach space.

Proof: Let x,y € Co(Q2) and € > 0. Note that

{t:1x(8) +y(8)| > e} C {t:|x(2)] >e/2; U{t:|y(t)] >¢e/2}.

Vv
closed compact as a union of two compacts

Hence {t : [x(t) + y(t)| > €} is compact, as a closed susbet of a
compact set. Hence x +y € Go(Q2). For A € F the set

{t: [ Mx(t)]| = e} ={t:|x(t)] > ﬁ} is compact, so Ax € Go(R2). Since
|x(t)| is continous on the compact set {t : |x(t)| > €}, we get

|x]|co = max¢eq |x(t)] < 0o. Thus Co(Q2) € Cp(Q2) is a subspace.
.Closedness”: Let {x,}7°; C Co(2) be convergent to some x € Cp(2).
For large n € N we have ||x, — x[|oc < 5 and then

{£2 1x(D] > £} € {¢ : Ixa()] > 2/2).
Thus {t : |x(t)] > ¢} is compact, as a closed subset of a compact set.
Hence x € Go(€2). Accordingly, Co(R2) is closed in Cp(2). [ |
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On a discrete spaces all functions are continuous!
Sequences are functions on the set N/

Cor. If Q = N is equipped with discrete topology, then we identify
Cp(£2) with the space of bounded sequences:

>0 = {x = (x(1),x(2), ...) : zgg Ix(k)| < oo}

equipped with the norm ||x||o := sup|x(k)|. Similarly, Go(2) can
keN

be identified with the space of sequences convergent to zero:

c = {x = (x(1),x(2),...) : lim x(k) =0}.

k—o00

Proof: A function x : N — T vanishes at infinity if and only if

the sequence {x(k)}?2; converges to zero: in discrete
spaces

x € G(N) <= V.o {keN:|x(k)| > e} compact = finite

< VesoTInenVisn|x(k)| < e <= x € . o)1z



We also consider the space of convergent sequences:
c:={x=(x(1),x(2),...) : Ix(oo)er kIer;Ox(k) = x(00)}.

As convergent sequences are bounded and limit preserves linear
combinations, ¢ is a linear subspace of /*°. Also c is closed in ¢°

(to prove it, you have to show that “a convergent sequence of .5
convergent sequences converges to a convergent sequence”).

Cor. We have the following Banach spaces
G C cC/r™

with the norm || x| s 1= sup,cy [x(k)|.




The support of a function x : Q — F is the closed set
supp(x) := {t € Q: x(t) # 0}.
Ex. If Q = (0,+00) and x(t) = sin(1/t), then supp(x) = Q.

Lem. Compactly supported continuous functions
C(Q) == {x € C(Q2) : supp(x) is compact}

form a linear subspace of Gy(Q2).

Proof: C.(Q2) C G(Q2), because {t € Q : |x(t)| > £} C supp(x)
and a closed subset of a compact set is compact. Moreover,
supp(Ax) = supp(x) for A # 0 and

supp(x + y) C supp(x) U supp(y),

when C.(Q2) is a linear space. |
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Def. A topological space Q is locally compact if any point in
has an open neighborhood, whose closure is compact

The space Q is Hausdorff if any two distinct
points in  have disjoint open neighborhoods.

Ex. Every open or closed subset of R” is a locally -
compact Hausdorff space. Every metric space is Hausdorff. %
s

Theorem (Urysohn lemma).

Let Q be a locally compact Hausdorff space. For any K C U C Q
where K is compact and U is open there is continuous
h:Q — [0, 1] with compact supp(h) C U and attaining 1 on K.




Cor. If Q is locally compact Hausdorff, then C.(Q2) = Go(€2).
So Gy(R2) is a completion of C.(f) in the supremum norm.

Proof: Let x € Gy(2). For each n put
K, :={t:|x(t)] > 1/n}, U, :={t:|x(t)| >1/(n+1)}.

Then K, is a compact subset of an open set U,. By Urysohn
lemma there is h, € C(2) such that 0 < h < 1, h,|x, = 1 and
supp(h,) C U,. Putting x, := x - h, we get x, € C(Q2) and

I xlle = sup X(DA() (0 = s x(Bh(E)-x(2)] < 2/m.

n

Hence {x,}22; C C(f2) converges to x € G(Q). |

Ex. For a discrete space Q2 = N the linear space C.(2) can be
indentified with the space of finite sequences:

coo = {x = (x(1), x(2), ...,x(N),0,0,...) : N EN,x(k) € F}.

In particular, cqo is a dense subspace of ¢.
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