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Spaces of continuous functions

Let Ω be a �xed topological space.

Continuous functions C (Ω) := {x : Ω→ F is continuous} with
values in the �eld F = R,C and

(x+y)(t) := x(t)+y(t), (λx)(t) := λx(t)

where x , y ∈ C (Ω), λ ∈ F,

(
pointwise

operations

)
is a linear space over F.

Continuous and bounded functions:

Cb(Ω) := {x ∈ C (Ω) : ∃M∀t∈Ω|x(t)| < M}

= {x ∈ C (Ω) : sup
t∈Ω
|x(t)| <∞}

form a linear subspace of C (Ω), which is equipped with the
so-called supremum norm

‖x‖∞ := sup
t∈Ω
|x(t)|.
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Fact. Convergence in ‖ · ‖∞ ≡ uniform convergence

xn
‖·‖∞−→ x ⇐⇒ lim

n→∞
‖xn − x‖∞ = 0

⇐⇒ lim
n→∞

sup
t∈Ω
|xn(t)− x(t)| = 0

⇐⇒ ∀ε>0 ∃N∈N ∀n>N sup
t∈Ω
|xn(t)− x(t)| < ε

⇐⇒ ∀ε>0 ∃N∈N ∀n>N ∀t∈Ω |xn(t)− x(t)| < ε

def⇐⇒ xn ⇒ x

where symbol ⇒ denotes the uniform convergence.

Ex. The sequence xn(t) = tn of functions on [0, 1] is pointwise

convergent to x(t) =

{
0, t < 1

1, t = 1
. But {xn}∞n=1 ⊆ C (Ω) is not

convergent in the norm ‖ · ‖∞. In particular,

uniformly convergent sequence of continuous functions

has to be convergent to a continuous function! 3 / 12



Prop. Cb(Ω) with the norm ‖x‖∞ = sup
t∈Ω
|x(t)| is a Banach space.

Proof: Let {xn}∞n=1 ⊆ Cb(Ω) be Cauchy. For each t ∈ Ω

|xn(t)− xm(t)| ¬ sup
s∈Ω
|xn(s)− xm(s)| = ‖xn − xm‖∞

n,m→∞−→ 0.

Hence the sequence {xn(t)}∞n=1 of scalars is Cauchy in F. Since F is

complete, there is x(t) ∈ F such, that xn(t)→ x(t) w F. Thus we
obtain a function Ω 3 t 7→ x(t) ∈ F, which is our �candidate for the

limit� of the sequence {xn}∞n=1.
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Prop. Cb(Ω) with the norm ‖x‖∞ = sup
t∈Ω
|x(t)| is a Banach space.

Proof: Let {xn}∞n=1 ⊆ Cb(Ω) be Cauchy. For each t ∈ Ω

|xn(t)− xm(t)| ¬ sup
s∈Ω
|xn(s)− xm(s)| = ‖xn − xm‖∞

n,m→∞−→ 0.

Hence the sequence {xn(t)}∞n=1 of scalars is Cauchy in F. Since F is

complete, there is x(t) ∈ F such, that xn(t)→ x(t) w F. Thus we
obtain a function Ω 3 t 7→ x(t) ∈ F, which is our �candidate for the

limit� of the sequence {xn}∞n=1. For each t ∈ Ω we have

|xn(t)− x(t)| = lim
m→∞

|xn(t)− xm(t)| ¬ lim
m→∞

‖xn − xm‖∞.

Hence

lim
n→∞

‖xn−x‖∞ = lim
n→∞

sup
t∈Ω
|xn(t)−x(t)| ¬ lim

n→∞
lim

m→∞
‖xn−xm‖∞ = 0.

{xn}∞n=1 jest Cauchy

Whence xn
‖·‖∞−→ x . The uniform limit of continuous functions is

continuous. Therefore x ∈ C (Ω). Moreover, x is bounded because

‖x‖∞ ¬ ‖x − xn‖∞ + ‖xn‖∞ <∞. Thus x ∈ Cb(Ω). �
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A continuous function on a compact set reaches its limits!

Cor. If Ω compact, then C (Ω) = Cb(Ω) and ‖x‖∞ = maxt∈Ω |x(t)|
(the function |x(t)| attains its maximum and in particular is bounded)

Continuous functions that vanish at in�nity

C0(Ω) :=
{
x ∈ C (Ω) : ∀ε>0 {t ∈ Ω : |x(t)| ­ ε} is compact

}
Ex. The function x(t) = e−t

2
does

not vanish at any point in Ω = R.
But it does vanish at in�nity!

Rem. If Ω is compact, then C0(Ω) = C (Ω) = Cb(Ω)!
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Prop. C0(Ω) is a closed subspace of the Banach space (Cb(Ω), ‖ · ‖∞).
Hence (C0(Ω), ‖ · ‖∞) is a Banach space.

Proof: Let x , y ∈ C0(Ω) and ε > 0. Note that

{t : |x(t) + y(t)| ­ ε}︸ ︷︷ ︸
closed

⊆ {t : |x(t)| ­ ε/2} ∪ {t : |y(t)| ­ ε/2}︸ ︷︷ ︸
compact as a union of two compacts

.

Hence {t : |x(t) + y(t)| ­ ε} is compact, as a closed susbet of a

compact set. Hence x + y ∈ C0(Ω). For λ ∈ F the set

{t : |λx(t)| ­ ε} = {t : |x(t)| ­ ε
|λ|} is compact, so λx ∈ C0(Ω). Since

|x(t)| is continous on the compact set {t : |x(t)| ­ ε}, we get

‖x‖∞ = maxt∈Ω |x(t)| <∞. Thus C0(Ω) ⊆ Cb(Ω) is a subspace.

�Closedness�: Let {xn}∞n=1 ⊆ C0(Ω) be convergent to some x ∈ Cb(Ω).
For large n ∈ N we have ‖xn − x‖∞ < ε

2 and then

{t : |x(t)| ­ ε} ⊆ {t : |xn(t)| ­ ε/2}.
Thus {t : |x(t)| ­ ε} is compact, as a closed subset of a compact set.

Hence x ∈ C0(Ω). Accordingly, C0(Ω) is closed in Cb(Ω). �
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On a discrete spaces all functions are continuous!
Sequences are functions on the set N!

Cor. If Ω = N is equipped with discrete topology, then we identify
Cb(Ω) with the space of bounded sequences:

`∞ := {x = (x(1), x(2), ...) : sup
k∈N
|x(k)| <∞}

equipped with the norm ‖x‖∞ := sup
k∈N
|x(k)|. Similarly, C0(Ω) can

be identi�ed with the space of sequences convergent to zero:

c0 := {x = (x(1), x(2), ...) : lim
k→∞

x(k) = 0}.

Proof: A function x : N→ F vanishes at in�nity if and only if
the sequence {x(k)}∞k=1 converges to zero:

x ∈ C0(N) ⇐⇒ ∀ε>0 {k ∈ N : |x(k)| ­ ε} compact = �nite

in discrete
spaces

⇐⇒ ∀ε>0∃N∈N∀k>N |x(k)| < ε ⇐⇒ x ∈ c0. 8 / 12



We also consider the space of convergent sequences:

c := {x = (x(1), x(2), ...) : ∃x(∞)∈F lim
k→∞

x(k) = x(∞)}.

As convergent sequences are bounded and limit preserves linear
combinations, c is a linear subspace of `∞. Also c is closed in `∞

(to prove it, you have to show that �a convergent sequence of
convergent sequences converges to a convergent sequence�).

Cor. We have the following Banach spaces

c0 ⊆ c ⊆ `∞

with the norm ‖x‖∞ := supk∈N |x(k)|.
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The support of a function x : Ω→ F is the closed set

supp(x) := {t ∈ Ω : x(t) 6= 0}.

Ex. If Ω = (0,+∞) and x(t) = sin(1/t), then supp(x) = Ω.

Lem. Compactly supported continuous functions

Cc(Ω) := {x ∈ C (Ω) : supp(x) is compact}

form a linear subspace of C0(Ω).

Proof: Cc(Ω) ⊆ C0(Ω), because {t ∈ Ω : |x(t)| ­ ε} ⊆ supp(x)
and a closed subset of a compact set is compact. Moreover,
supp(λx) = supp(x) for λ 6= 0 and

supp(x + y) ⊆ supp(x) ∪ supp(y),

when Cc(Ω) is a linear space. �
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Def. A topological space Ω is locally compact if any point in Ω
has an open neighborhood, whose closure is compact.

The space Ω is Hausdor� if any two distinct
points in Ω have disjoint open neighborhoods. x

y
x

y
x

y
x

y

Ex. Every open or closed subset of Rn is a locally
compact Hausdor� space. Every metric space is Hausdor�.

Theorem (Urysohn lemma).

Let Ω be a locally compact Hausdor� space. For any K ⊆ U ⊆ Ω
where K is compact and U is open there is continuous
h : Ω→ [0, 1] with compact supp(h) ⊆ U and attaining 1 on K .
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Cor. If Ω is locally compact Hausdor�, then Cc(Ω) = C0(Ω).
So C0(Ω) is a completion of Cc(Ω) in the supremum norm.

Proof: Let x ∈ C0(Ω). For each n put

Kn := {t : |x(t)| ­ 1/n}, Un := {t : |x(t)| > 1/(n + 1)}.
Then Kn is a compact subset of an open set Un. By Urysohn
lemma there is hn ∈ Cc(Ω) such that 0 ¬ h ¬ 1, hn|Kn = 1 and
supp(hn) ⊆ Un. Putting xn := x · hn we get xn ∈ Cc(Ω) and

‖xn−x‖∞ = sup
t∈Ω
|x(t)h(t)−x(t)| = sup

t∈Ω\Kn

|x(t)h(t)−x(t)| ¬ 2/n.

Hence {xn}∞n=1 ⊆ Cc(Ω) converges to x ∈ C0(Ω). �

Ex. For a discrete space Ω = N the linear space Cc(Ω) can be
indenti�ed with the space of �nite sequences:

c00 = {x = (x(1), x(2), ..., x(N), 0, 0, ...) : N ∈ N, x(k) ∈ F}.

In particular, c00 is a dense subspace of c0.
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